src.util.strings module
strings module
Module used to control in one place all the strings of the program
- class src.util.strings.s
Bases:
object- a_net = 'Anchor'
- activation_key = 'activation'
- adam_strength_key = 'adam'
- all_grays = ['grays', 'graysAfterFit', 'graysAfterFit_netReset', 'graysAfterFit_modelCheckpoint', 'graysAfterFit_generateEmbeddings', 'RLTrnFrz_graysAfterFit', 'RLTrnFrz_External_graysAfterFit', 'RLTrnFrz_External_AfterTrivial', 'graysAfterFitCURE_netReset']
- appendix_key = 'appendix'
- bads_cls = 'bads_classes'
- bads_trg = 'bads_targets'
- bads_wdw = 'bads_windows'
- bads_wdw_norm = 'bads_windows_normalized'
- batch_size_key = 'batch_size'
- bf_key = 'bf_size'
- callbacks_par = 'callBacks_settings'
- cb_ModelCheckpoint = 'ModelCheckpoint'
- cb_earlyStopping = 'EarlyStopping'
- cb_swap = 'swap_cb'
- checkpoints_path = 'checkpoint_path'
- csv_help = 'Flag to activate the csv output style'
- csv_path = 'csv_path'
- cv_thr = 'cv_threshold'
- data_drop_features = 'drop_features'
- data_features = 'features'
- data_key = 'data'
- data_limit = 'limit'
- data_object = 'object'
- data_override = 'override'
- data_par = 'data_pre_processing'
- data_path = 'datasets_path'
- data_train_prt = 'train_portion'
- data_val_prt = 'val_portion'
- data_vmaf_threshold = 'vmaf_threshold'
- data_window = 'window_size'
- default_conf = 'default_ini'
- emb_grays = ['graysAfterFit_generateEmbeddings']
- env_par = 'environment_settings'
- env_rng = 'rng'
- env_tf_rng = 'tf_rng'
- epochs_key = 'epochs'
- epochs_switch_loss = 'epochs_switch_loss'
- es_delta = 'min_delta'
- es_patience = 'patience'
- es_restore = 'restore_best_weights'
- exp_input_dataset = 'input_dataset'
- exp_sp_metric = 'sp_metric'
- exp_verbose = 'verbose'
- exp_vmaf_flag = 'vmaf_flag'
- expectation = 'expectation'
- experiment_key = 'experiment_settings'
- expph_grouping_key = 'group_generator_keys'
- expph_triplet_gen = 'triplet_generator_keys'
- features = 'features'
- file_obj_types = ['file']
- fitMethod = 'fitMethod'
- folder_obj_types = ['folder', 'direcotry']
- goods_cls = 'goods_classes'
- goods_trg = 'goods_targets'
- goods_wdw = 'goods_windows'
- goods_wdw_norm = 'goods_windows_normalized'
- grayEvMethod = 'grayEvolutionMethod'
- gray_afterFit = 'graysAfterFit'
- gray_afterFit_cure_netReset = 'graysAfterFitCURE_netReset'
- gray_afterFit_netReset = 'graysAfterFit_netReset'
- gray_anchor_only = 'gray_anchor'
- gray_checkpoint = 'graysAfterFit_modelCheckpoint'
- gray_default = 'grays'
- gray_generateEmb = 'graysAfterFit_generateEmbeddings'
- gray_in_train_portion = 'gray_in_train_portion'
- gray_inf_rep = 'gray_inference_repetitions'
- gray_inference = 'gray_inference'
- gray_post_train_portion = 'gray_post_train_portion'
- grays_cls = 'grays_classes'
- grays_trg = 'grays_targets'
- grays_wdw = 'grays_windows'
- grays_wdw_norm = 'grays_windows_normalized'
- group_column = 'group'
- group_df_pkl = 'groups_df'
- h_origin = 'halfs'
- half_file = 'halfs'
- history_xlim = 'history_xlim'
- history_ylim = 'history_ylim'
- index_col = ['exp_id', 'second']
- input_data = 'input_data'
- io_exists_key = 'exists'
- io_name_key = 'name'
- io_path_key = 'path'
- io_subtype_key = 'subtype'
- io_type_key = 'type'
- kick_str = 'kick_strength'
- last_layer_test = 'tsne-resulting-df-{}'
- log_file = 'log_file'
- log_format = '%(asctime)s - %(levelname)s - %(message)s'
- log_path = 'log_path'
- loss_functions = 'loss_functions'
- loss_par = 'loss_settings'
- loss_variables = 'loss_variables'
- main_group_column = 'exp_id'
- margin_key = 'margin'
- mc_save_freq = 'save_freq'
- mc_weights_only = 'save_weights_only'
- metrics_functions = 'functions'
- metrics_par = 'metrics_settings'
- min_delta_key = 'delta'
- ml_eagerly = 'run_eagerly'
- model_par = 'model_settings'
- ms_path = 'model_analysis'
- n_net = 'Negative'
- n_nodes_key = 'n_nodes'
- n_origin = 'negatives'
- negative_file = 'negatives'
- network_plot_features = 'network_plot_features'
- nn_column = 'Network'
- no_feature_col = ['vmaf', 'vmafXsecond']
- numpy_rng = 'numpy_rng'
- origin_column_name = 'From'
- p_net = 'Positive'
- p_origin = 'positives'
- param_Environment_type = 'environment'
- param_PreProcessing_type = 'preprocessing'
- param_RLActPolicy_type = 'RLActionPolicy'
- param_RLEnvExitFunction_type = 'RLEnvExitFunction'
- param_RLObsPP_type = 'RLObservationPP'
- param_RLPerfEval_type = 'RLPerfEval'
- param_action_args = 'args'
- param_action_kwargs = 'kwargs'
- param_action_type = 'action'
- param_args_ast = ['action', 'embedding', 'layer', 'metric', 'loss', 'callback', 'flow', 'fitMethod', 'grayEvolution', 'lossParam', 'rewardFunction', 'RLPerfEval', 'RLObservationPP', 'RLActionPolicy', 'RLEnvExitFunction']
- param_callback_type = 'callback'
- param_embedding_type = 'embedding'
- param_experiment_type = 'experiment'
- param_fitmethod_type = 'fitMethod'
- param_flow_type = 'flow'
- param_generic_type = 'generic'
- param_grayEvolution_type = 'grayEvolution'
- param_layer_type = 'layer'
- param_lossParam_type = 'lossParam'
- param_loss_type = 'loss'
- param_metric_type = 'metric'
- param_model_type = 'model'
- param_numpyRng_type = 'numpyRng'
- param_reinforce_model_type = 'reinforcementModel'
- param_reward_function_type = 'rewardFunction'
- param_study_type = 'study'
- param_types = ['generic', 'preprocessing', 'environment', 'numpyRng', 'action', 'experiment', 'model', 'embedding', 'layer', 'metric', 'loss', 'callback', 'flow', 'fitMethod', 'study', 'grayEvolution', 'lossParam', 'reinforcementModel', 'rewardFunction', 'RLPerfEval', 'RLObservationPP', 'RLActionPolicy', 'RLEnvExitFunction']
- param_value = 'value'
- patience_key = 'patience'
- pkl_gray = 'gray_normalized'
- pkl_path = 'pkl_path'
- pkl_test = 'test_normalized'
- pkl_training = 'training_normalized'
- pkl_validation = 'validation_normalized'
- plot_features = 'plot_features'
- plot_format = 'plot_format'
- plot_key = 'plot_conf'
- positive_file = 'positives'
- pp_actions = 'actions'
- pp_flow_name = 'flow_name'
- pp_path = 'pp_analysis'
- prefetch_key = 'prefetch'
- prp_cons = 'consideration'
- prp_par = 'data_proportioning'
- prp_pres = 'balancing'
- prp_special = 'special_options'
- results_path = 'result_path'
- rlTrnFrz_external_AfterTrivial = 'RLTrnFrz_External_AfterTrivial'
- rlTrnFrz_external_graysAfterFit = 'RLTrnFrz_External_graysAfterFit'
- rlTrnFrz_graysAfterFit = 'RLTrnFrz_graysAfterFit'
- rl_actions = 'actions'
- rl_active = 'active'
- rl_actuator = 'actuator'
- rl_adam = 'learning_rate'
- rl_delta = 'delta'
- rl_environment = 'environment'
- rl_episodes = 'episodes'
- rl_gamma = 'gamma'
- rl_infer_episodes = 'inference_episodes'
- rl_inputs = 'inputs'
- rl_nnodes = 'num_nodes'
- rl_par = 'reinforcement_learning_settings'
- rl_sigma = 'sigma'
- rl_skip = 'skip'
- rl_steps = 'steps'
- rl_training = ['RLTrnFrz_graysAfterFit', 'RLTrnFrz_External_graysAfterFit', 'RLTrnFrz_External_AfterTrivial']
- rng_key = 'rng'
- seconds_column = 'second'
- shape_key = 'shape'
- sigmoid_range = 'sigmoid_range'
- sigmoid_value = 'sigmoid_value'
- silent_help = 'Flag to deactivate the output to the STDOUT'
- slimit = 'slimit'
- sub_obj_type = ['input_data']
- swap_ep_limit = 'epoch_limit'
- swap_function = 'function'
- tensorboard_path = 'tensorboard_path'
- tf_rng_key = 'tf_rng'
- train_dst_key = 'train_portion'
- unix_time = 'uxtime_sec'
- val_dst_key = 'val_portion'
- verbose_help = 'Define the level of verbosity in the logs'
- vmafXsecond_column = 'vmafXsecond'
- vmaf_column = 'vmaf'
- vmaf_threshold = 'vmaf_threshold'
- window_size = 'window_size'