src.actions package
Submodules
- src.actions.actionWrapper module
- Action Wrapper Module
GenerateGrayTriplets()GoodBadGraySeparation()GoodBad_randomGray()action_selector()check_df_not_none()durationSeparation()featureMax()featureMean()featureMin()featureStd()generatePredictionTriplets()generatePredictionTripletsReverse()generateTriplets()generateTripletsNG()get_randomGray()normalize()normalizeMinMax()print_data()
- src.actions.dataFrame module
MNIST_pack()MNIST_unpack()add_window_column()compute_dayofweek()compute_lag_features()compute_roll_features()df_none()dropColumns()dropNaN()dropOutliers()drop_anomalous()drop_not_anomalous()generateExpectationMatrix()generateExpectationMatrixMNIST()generateImgTriplets()generateImgUnrelatedGroups()generateTripletsMNIST()generateUnrelatedGroupsMNIST()group_standardize()keepColumns()load()loadMNIST()normalizeMNIST()removeNaN()remove_over_threshold()reshapeMNIST()rolling_feature()toTfDatasetsMNIST()trn_val_test_splitMNIST()write()
- src.actions.embeddings module
- src.actions.kaggleDst module
- src.actions.separation module
- src.actions.windowing module
Module contents
Actions Package
This package provides a collection of action modules for data processing, manipulation, and analysis within the SNN2 neural network framework.
The actions package contains specialized modules for different aspects of data processing workflows, including data frame operations, dataset separation, windowing techniques, Kaggle dataset handling, and embedding operations.
Modules
- dataFramemodule
DataFrame operations and manipulations for structured data processing.
- separationmodule
Data separation and balancing utilities for train/validation/test splits and threshold-based categorization.
- windowingmodule
Time series and sequence windowing operations for neural network input preparation.
- kaggleDstmodule
Kaggle dataset specific operations and preprocessing utilities.
- embeddingsmodule
Embedding loading, manipulation, and centroid computation operations.
Notes
All action modules in this package use the @action decorator for consistent function tracking and logging within the SNN2 framework. The modules are designed to work together to provide a complete data processing pipeline for neural network training and evaluation.
Examples
Import specific action modules:
>>> from SNN2.src.actions import separation
>>> from SNN2.src.actions import embeddings
Access action functions:
>>> # Use separation functions
>>> train, val, test = separation.TrnValTstSeparation(data)
>>>
>>> # Use embedding functions
>>> embeddings_tensor = embeddings.load_embeddings(path, pkl_handler)
>>> centroids = embeddings.compute_centroids(embeddings_tensor)
See also
SNN2.src.decorators.decoratorsAction decorator implementation
SNN2.src.core.dataCore data management classes
SNN2.src.ioInput/output utilities and handlers