SNN2.src.util.strings module

strings module

Module used to control in one place all the strings of the program

class SNN2.src.util.strings.s

Bases: object

a_net = 'Anchor'
activation_key = 'activation'
adam_strength_key = 'adam'
all_grays = ['grays', 'graysAfterFit', 'graysAfterFit_netReset', 'graysAfterFit_modelCheckpoint', 'graysAfterFit_generateEmbeddings', 'RLTrnFrz_graysAfterFit', 'RLTrnFrz_External_graysAfterFit', 'RLTrnFrz_External_AfterTrivial', 'graysAfterFitCURE_netReset']
appendix_key = 'appendix'
bads_cls = 'bads_classes'
bads_trg = 'bads_targets'
bads_wdw = 'bads_windows'
bads_wdw_norm = 'bads_windows_normalized'
batch_size_key = 'batch_size'
bf_key = 'bf_size'
callbacks_par = 'callBacks_settings'
cb_ModelCheckpoint = 'ModelCheckpoint'
cb_earlyStopping = 'EarlyStopping'
cb_swap = 'swap_cb'
checkpoints_path = 'checkpoint_path'
csv_help = 'Flag to activate the csv output style'
csv_path = 'csv_path'
cv_thr = 'cv_threshold'
data_drop_features = 'drop_features'
data_features = 'features'
data_key = 'data'
data_limit = 'limit'
data_object = 'object'
data_override = 'override'
data_par = 'data_pre_processing'
data_path = 'datasets_path'
data_train_prt = 'train_portion'
data_val_prt = 'val_portion'
data_vmaf_threshold = 'vmaf_threshold'
data_window = 'window_size'
default_conf = 'default_ini'
emb_grays = ['graysAfterFit_generateEmbeddings']
env_par = 'environment_settings'
env_rng = 'rng'
env_tf_rng = 'tf_rng'
epochs_key = 'epochs'
epochs_switch_loss = 'epochs_switch_loss'
es_delta = 'min_delta'
es_patience = 'patience'
es_restore = 'restore_best_weights'
exp_input_dataset = 'input_dataset'
exp_sp_metric = 'sp_metric'
exp_verbose = 'verbose'
exp_vmaf_flag = 'vmaf_flag'
expectation = 'expectation'
experiment_key = 'experiment_settings'
expph_grouping_key = 'group_generator_keys'
expph_triplet_gen = 'triplet_generator_keys'
features = 'features'
file_obj_types = ['file']
fitMethod = 'fitMethod'
folder_obj_types = ['folder', 'direcotry']
goods_cls = 'goods_classes'
goods_trg = 'goods_targets'
goods_wdw = 'goods_windows'
goods_wdw_norm = 'goods_windows_normalized'
grayEvMethod = 'grayEvolutionMethod'
gray_afterFit = 'graysAfterFit'
gray_afterFit_cure_netReset = 'graysAfterFitCURE_netReset'
gray_afterFit_netReset = 'graysAfterFit_netReset'
gray_anchor_only = 'gray_anchor'
gray_checkpoint = 'graysAfterFit_modelCheckpoint'
gray_default = 'grays'
gray_generateEmb = 'graysAfterFit_generateEmbeddings'
gray_in_train_portion = 'gray_in_train_portion'
gray_inf_rep = 'gray_inference_repetitions'
gray_inference = 'gray_inference'
gray_post_train_portion = 'gray_post_train_portion'
grays_cls = 'grays_classes'
grays_trg = 'grays_targets'
grays_wdw = 'grays_windows'
grays_wdw_norm = 'grays_windows_normalized'
group_column = 'group'
group_df_pkl = 'groups_df'
h_origin = 'halfs'
half_file = 'halfs'
history_xlim = 'history_xlim'
history_ylim = 'history_ylim'
index_col = ['exp_id', 'second']
input_data = 'input_data'
io_exists_key = 'exists'
io_name_key = 'name'
io_path_key = 'path'
io_subtype_key = 'subtype'
io_type_key = 'type'
kick_str = 'kick_strength'
last_layer_test = 'tsne-resulting-df-{}'
log_file = 'log_file'
log_format = '%(asctime)s - %(levelname)s - %(message)s'
log_path = 'log_path'
loss_functions = 'loss_functions'
loss_par = 'loss_settings'
loss_variables = 'loss_variables'
main_group_column = 'exp_id'
margin_key = 'margin'
mc_save_freq = 'save_freq'
mc_weights_only = 'save_weights_only'
metrics_functions = 'functions'
metrics_par = 'metrics_settings'
min_delta_key = 'delta'
ml_eagerly = 'run_eagerly'
model_par = 'model_settings'
ms_path = 'model_analysis'
n_net = 'Negative'
n_nodes_key = 'n_nodes'
n_origin = 'negatives'
negative_file = 'negatives'
network_plot_features = 'network_plot_features'
nn_column = 'Network'
no_feature_col = ['vmaf', 'vmafXsecond']
numpy_rng = 'numpy_rng'
origin_column_name = 'From'
p_net = 'Positive'
p_origin = 'positives'
param_Environment_type = 'environment'
param_PreProcessing_type = 'preprocessing'
param_RLActPolicy_type = 'RLActionPolicy'
param_RLEnvExitFunction_type = 'RLEnvExitFunction'
param_RLObsPP_type = 'RLObservationPP'
param_RLPerfEval_type = 'RLPerfEval'
param_action_args = 'args'
param_action_kwargs = 'kwargs'
param_action_type = 'action'
param_args_ast = ['action', 'embedding', 'layer', 'metric', 'loss', 'callback', 'flow', 'fitMethod', 'grayEvolution', 'lossParam', 'rewardFunction', 'RLPerfEval', 'RLObservationPP', 'RLActionPolicy', 'RLEnvExitFunction']
param_callback_type = 'callback'
param_embedding_type = 'embedding'
param_experiment_type = 'experiment'
param_fitmethod_type = 'fitMethod'
param_flow_type = 'flow'
param_generic_type = 'generic'
param_grayEvolution_type = 'grayEvolution'
param_layer_type = 'layer'
param_lossParam_type = 'lossParam'
param_loss_type = 'loss'
param_metric_type = 'metric'
param_model_type = 'model'
param_numpyRng_type = 'numpyRng'
param_reinforce_model_type = 'reinforcementModel'
param_reward_function_type = 'rewardFunction'
param_study_type = 'study'
param_types = ['generic', 'preprocessing', 'environment', 'numpyRng', 'action', 'experiment', 'model', 'embedding', 'layer', 'metric', 'loss', 'callback', 'flow', 'fitMethod', 'study', 'grayEvolution', 'lossParam', 'reinforcementModel', 'rewardFunction', 'RLPerfEval', 'RLObservationPP', 'RLActionPolicy', 'RLEnvExitFunction']
param_value = 'value'
patience_key = 'patience'
pkl_gray = 'gray_normalized'
pkl_path = 'pkl_path'
pkl_test = 'test_normalized'
pkl_training = 'training_normalized'
pkl_validation = 'validation_normalized'
plot_features = 'plot_features'
plot_format = 'plot_format'
plot_key = 'plot_conf'
positive_file = 'positives'
pp_actions = 'actions'
pp_flow_name = 'flow_name'
pp_path = 'pp_analysis'
prefetch_key = 'prefetch'
prp_cons = 'consideration'
prp_par = 'data_proportioning'
prp_pres = 'balancing'
prp_special = 'special_options'
results_path = 'result_path'
rlTrnFrz_external_AfterTrivial = 'RLTrnFrz_External_AfterTrivial'
rlTrnFrz_external_graysAfterFit = 'RLTrnFrz_External_graysAfterFit'
rlTrnFrz_graysAfterFit = 'RLTrnFrz_graysAfterFit'
rl_actions = 'actions'
rl_active = 'active'
rl_actuator = 'actuator'
rl_adam = 'learning_rate'
rl_delta = 'delta'
rl_environment = 'environment'
rl_episodes = 'episodes'
rl_gamma = 'gamma'
rl_infer_episodes = 'inference_episodes'
rl_inputs = 'inputs'
rl_nnodes = 'num_nodes'
rl_par = 'reinforcement_learning_settings'
rl_sigma = 'sigma'
rl_skip = 'skip'
rl_steps = 'steps'
rl_training = ['RLTrnFrz_graysAfterFit', 'RLTrnFrz_External_graysAfterFit', 'RLTrnFrz_External_AfterTrivial']
rng_key = 'rng'
seconds_column = 'second'
shape_key = 'shape'
sigmoid_range = 'sigmoid_range'
sigmoid_value = 'sigmoid_value'
silent_help = 'Flag to deactivate the output to the STDOUT'
slimit = 'slimit'
sub_obj_type = ['input_data']
swap_ep_limit = 'epoch_limit'
swap_function = 'function'
tensorboard_path = 'tensorboard_path'
tf_rng_key = 'tf_rng'
train_dst_key = 'train_portion'
unix_time = 'uxtime_sec'
val_dst_key = 'val_portion'
verbose_help = 'Define the level of verbosity in the logs'
vmafXsecond_column = 'vmafXsecond'
vmaf_column = 'vmaf'
vmaf_threshold = 'vmaf_threshold'
window_size = 'window_size'