SNN2.src.model.layers.CURELayer.algorithm module
TfCURE module
This module is used to compute the CURE algorithm on a dataset using tensorflow
- class SNN2.src.model.layers.CURELayer.algorithm.TfCURE(points_set: Tensor, number_of_clusters: int, number_of_representatives: int = 5, compression_factor: float = 0.5, engine: str = 'Default')
Bases:
objectTfCURE.
This class is the entry point to execute the CURE algorithm using tensorflow
- property clusters: Tensor | None
- create_queue(*, logger=None, write_msg=<function f_logger.<locals>.__dummy_log>, **kwargs) None
- process() None
- class SNN2.src.model.layers.CURELayer.algorithm.TfCluster(cluster: Tensor, c_id: int, dtype_int: Type = tf.int32, dtype_pt: Type = tf.float32)
Bases:
objectTfCluster.
Class that manages a single Tensorflow cluster
- compute_representors(n_representors: int = 1, compression_factor: float = 0.0) None
- get_furthest(adversaries: Tensor, reduction_function: Callable | None = None) Tuple[Tensor, Tensor]
- property mean: Tensor
- min_reduction(t: RaggedTensor, axis: int = 0) Tuple[Tensor, Tensor]
- my_dst(adversaries: Tensor | Self, distance_function: Callable | None = None) Tensor
- class SNN2.src.model.layers.CURELayer.algorithm.TfClusters(clusters)
Bases:
object