SNN2.src.core.data.flow.MVNO module
class default flow
Use this module to manage a default flow object.
- class SNN2.src.core.data.flow.MVNO.MVNOFlow(*args, dataset: str | None = None, columns: List[str] | None = None, gray_post_train_portion: float = 0.7, gray_in_train_portion: float = 0.3, **kwargs)
Bases:
augmented_clsMVNO.
PreProcessing flow for the MVNO dataset
- execute(*args, **kwargs) None
- get_triplet(data: ~SNN2.src.decorators.decorators.c_logger.<locals>.augmented_cls, pkl_name: str = 'default_get_triplet_name') augmented_cls
- class SNN2.src.core.data.flow.MVNO.MVNOFlow_getGoodBadDiff(*args, **kwargs)
Bases:
augmented_cls- local_load() None
load.
- class SNN2.src.core.data.flow.MVNO.MVNOFlow_load(*args, **kwargs)
Bases:
augmented_clsMVNOFlow_load. Class used to manage and execute a specific sequence of operations for the loading of the dataframe.
This class object receives the action_parm from the caller. The class object also receives the pkl handler. The method __call__ is used to execute the sequence of operations.
It’s possible to request the number of steps that this class object will exeucte through object.steps attribute. It’s also avaialbe the attribue object.pkl_list that contains the list of pkl files that will be used in the sequence of operations.
It available the method object.check_pkl that returns ture if the pkl files are available and internally loads the pkl files.
- local_load() None
load.